
An Invitation to Canada’s Mathematics 
and Statistics Undergraduates... 

Come East and Go Further 

If you are hopeful of winning an NSERC Undergraduate Student Award 
(USRA) for research next summer, please consider visiting the Department of 
Mathematics and Statistics of Memorial University. 
 
This is one of Canada‟s top universities and the largest in Atlantic Canada.  With 
over 32 faculty members, half of whom have been hired since 2005, the 
Department of Mathematics and Statistics is quickly becoming one of the best.  
One fifth of our faculty hold the highest rank of university research professor. 
 
Attached are several proposals prepared with undergraduate research in mind.  If 
you‟re interested in coming east, if you‟re a Canadian citizen or have permanent 
resident status, and if you have an A average, please contact Dr. Edgar 
Goodaire at math-head@mun.ca before January 9, 2012. 
 
You will LOVE St. John‟s, the oldest city in North America, with a vibrant cultural 
and social life, great coastal walking trails, the scene of fabulous summer folk 
and rock festivals and home to a Regatta that dates to 1816. 
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Measurement error and genetic epidemiology 

of obesity in Newfoundland 

 

Obesity is the most common metabolic 
condition in developed countries and is 
considered to be the second leading avoidable 
cause of mortality for adults in Western 
countries. Recent reports indicate that 
Newfoundland and Labrador has the second 
highest prevalence of overweight and obese 
adults in Canada.  This complex trait is 
determined by multiple environmental factors 
that interact with one another in complicated 
ways. The existing studies examine such 
factors under the assumption that they are 
measured accurately. However, unobserved or 
error-prone environmental factors and/or 
genotyping errors are unavoidable. It is now 
well known that measurement error can 
influence the results of the study. The impact of 
ignoring these errors varies from bias and large 

variability in estimators to low power or even 
false-negative results in detecting genetic 
associations. In order to improve the accuracy 
and precision in the assessment of both genetic 
and environmental factors, one needs to take 
into account these errors. Our objective is to 
develop a general statistical framework able to 
efficiently characterize interactions between 
some environmental and genetic factors that 
link to the development of obesity, where both 
factors are prone to error.  Our ultimate goal is 
to discover and characterize new biomarkers of 
abnormal growth, resulting in the development 
of new approaches to the diagnosis and 

treatment of obesity in the province. 

 

This project benefits from a close collaboration 
with Professor Guang Sun at the Faculty of 

Medicine at Memorial University. He is an 
expert in the field of genetics and nutritional 
factors responsible for obesity and diabetes. 
We will apply our methodology to the genetics 
data provided by Dr. Sun‟s lab. This data 
includes some environmental factors as well as 
genotyping data of over 3000 individuals from 
the province.  Summer students will be trained 
to apply different algorithms to estimate 
genotyping error rates on the data, and also to 

do some advance analysis and modeling. 

Dr. Taraneh Abarin 
Assistant Professor in Statistics 
tabarin@mun.ca 

Curvature in group theory 

Geometric group theory is the study of algebraic properties of a group by the 
use of geometry.  Many questions in this area can be attacked by 
undergraduate students.  A general set up is to relate geometric properties 
of a space with algebraic properties of its group of symmetries. 
 
In this project, we explore the relation between the curvature of a space and 
the algebraic properties of its group of symmetries.  Notions of curvature 
measure how far a space is from being flat.  We will be working with two-
dimensional spaces made of polygons and study combinatorial notions of 
curvature on them.  For example, a tessellation of the Euclidean plane by 
squares will be considered flat, and a regular tessellation of the hyperbolic 
plane will have negative curvature.  For concrete spaces with negative 
curvature, the student will identify algebraic properties of certain groups of 
symmetries by applying recent results in the literature. 
 
The only background required is familiarity with the notion of group and 
interest in geometric ideas. 
 
 

Dr. Eduardo Martinez-Pedroza 
Assistant Professor in Mathematics 

emartinezpedroza@mun.ca 



Optimization of oil reservoir development 

The viability of many projects related to the oil industry of Newfoundland and Labrador is sensitive 
to many operation parameters. Of particular interest is the question of where a set of injection/
production wells should be placed to maximize profit over some time horizon into the future. It is 
not possible to experiment physically with the placement of wells. Instead, we will use oil reservoir 
simulators to computationally approximate production rates for oil and water and then evaluate an 
economic model of the value of production. Exhaustively evaluating the reservoir simulator for 
every possible configuration of wells would require millions of expensive computer simulations, 
well beyond the means of available resources. This project involves the development of fast 
strategies to search and efficiently identify the optimal configuration of wells. The student will learn 
about modern oil reservoir simulators, the mathematics behind them and the latest techniques in 
numerical optimization. Required skills: Matlab, some high level programming language, numerical 

methods, and partial differential equations.  

Counting fine gradings on classical simple 

Lie algebras 

If A is an algebra and G is a group then a grading by G on A is a vector space decomposition A = g∈G Ag such that Ag Ah ⊆ Ag⋆h 

where ⋆ is the operation in G. For example, take the algebra of 2 × 2 complex matrices A = M2( ) and write A = A[0]  A[1] where  
A[0] is spanned by the matrix units E11 and E22 and A[1] is spanned by E12 and E21. Then we have A[0] A[0] ⊆ A[0], A[0] A[1] ⊆ A[1],        

A[1] A[0] ⊆ A[1] and A[1] A[1] ⊆ A[0], so the decomposition A = A[0]  A[1] is a grading by the additive group 2 = {[0],[1]}.  This grading 

can be refined as follows: take A0 = A[0] and split A[1] = A-1  A1 where A1 is spanned by E12 and A-1 is spanned by E21. Then A = 

A-1  A0  A1 is a grading by the additive group , with Ak defined to be zero for k ∉ {-1,0,1}.  This -grading on M2( ) is fine in 
the sense that it cannot be further refined. It turns out that the number of fine gradings by abelian groups on the algebra Mn( ) 
equals the number of abelian groups whose order is a divisor of n. For n = 2, there are two fine gradings: the above -grading 
and the ( 2 × 2)-grading obtained by taking A([0],[0]) spanned by the identity matrix and each of the remaining three components 
spanned by one of the Pauli matrices. 
 

The algebra Mn( ) contains three interesting subspaces: traceless matrices sln( ), skew-symmetric matrices son( ) and 

symplectic matrices spn( ). Each of these subspaces is closed under the commutator operation [a,b] = ab − ba, so it is a Lie 

algebra. These Lie algebras are simple in the sense that they do not have nonzero proper ideals. We have a classification of all 

fine gradings on the Lie algebras sln( ), son( ) and spn( ) in terms of orbits of certain actions of matrix groups over the field of 
two elements. The summer project would consist of exploring the combinatorics of these actions and counting the number of 
orbits (which is the same as the number of fine gradings) for various values of n.  

Dr. Ronald Haynes 
Associate Professor in 
Mathematics 
rhaynes@mun.ca 

Dr. Mikhail Kotchetov 
Associate Professor in Mathematics 
mikhail@mun.ca 



Designing a multiscale computer model for 

petroleum reservoir simulation 

 

The success of many projects related to 
offshore oil industry of Newfoundland and 
Labrador depends on improved understanding 
of the very complex fluid flow in geological 
reservoirs. A petroleum reservoir is a porous 
medium or rock formation that contains 
hydrocarbons. The study of petroleum reservoir 
simulation aims to find ways and means of 
optimizing the recovery of hydrocarbons. Since 
the primary recovery process leaves 70%-85% 
of hydrocarbons in the reservoir, an improved 
understanding of enhanced recovery methods 
remains an everlasting challenge to the field of 
petroleum reservoir engineering. In order 
to  understand fully why hydrocarbons are 
trapped in rock formations and how to extract 

most of the trapped hydrocarbons, one must 
understand two principal issues. First, an 
understanding of the characteristics of the 
porous medium would tell us why hydrocarbons 
are trapped in the reservoirs. Second, the study 
of the complex characteristics of multiphase 
flow in a porous medium would enable the 
extraction of trapped fluid, thereby optimizing 
enhanced oil recovery techniques. According to 
current state-of-the-art theoretical and 
experimental knowledge, the extreme degree of 
complexity of fluid flow in reservoirs can be 
studied optimally using sophisticated computer 
models. On the other hand, physical models 
and observational data can be used to 
characterize geological models that describes a 

rock formation.  
 
A goal of the proposed research is the 
development of a next generation multiscale 
computer model for studying the potential for 
enhanced oil recovery techniques as well as the 
storage of CO2 in mature oil reservoirs. In this 
direction, I plan to extend an existing multi-
scale computational fluid dynamics~(CFD) 
model to study multi-phase flow in porous 

media.  

Dr. Jahrul Alam 
Assistant Professor in  
Mathematics 
alamj@mun.ca 

Metastable quantum states:  

Master equation and resonance 

theory 
Most bound states (stationary states) of a quantum system become 
unstable (decay slowly) when the system is coupled to another, large 
quantum system. This is due to irreversibility induced by the coupling. 
The student will learn two techniques for analyzing the dynamics of 
metastable (long-lived) quantum states: (1) the master equation method 
and (2) the quantum resonance method. The former is well established 
and widely applied in modern physics (e.g. quantum optics). However, in 
certain physically naturally emerging situations, predictions of the master 
equation approximation are accurate only on an intermediate time-scale 
(“weak coupling limit”). In particular, that approximation may predict the 
existence of many stationary states, even for systems known to have a 
unique such state. The reason for this is that up to a time-scale resolved 
by the master equation, many states look stationary, but beyond 
intermediate times they are in fact decaying. The quantum resonance 
method describes the dynamics accurately for all times. It can thus be 
used to separate the dynamics of “fake” stationary states (predicted by 
the master equation technique) from that of the true one. The goal is to 
(a) understand both techniques at a level permitting to carry out 
analyses of concrete models, and (b) to show directly the above 
mentioned scenario for a simple model.  

 
Dr. Marco Merkli 
Associate Professor in Mathematics 
merkli@mun.ca 

Geometry of quantum  

states 

As the prospect of building quantum computers becomes more concrete, 
Quantum Information Theory is now one of the most active fields in 
science. Quantum entanglement (i.e., nonseparability) is thought to be at 
the heart of Quantum Information Theory. It is the key ingredient in 
modern quantum algorithms, such as Shor‟s algorithm for integer 
factorization and Deutsch-Jozsa algorithm.  
 
One of the central problems in Quantum Information Theory is to 
understand the geometric and/or probabilistic aspects of subsets of 
quantum states, for instance, separable quantum states and entangled 
quantum states. Knowledge about the geometry of the subset of 
entangled quantum states is essential for identifying and quantifying 
quantum entanglement, and thus is crucial for designing and analyzing 
quantum algorithms.  
 
In this project, we will study the following basic questions:  (1) what is 
the relative size of entanglement (or other interesting properties)?  
(2) how to determine whether a quantum state is separable or 
entangled? Students will learn about quantum entanglement, criterion for 
detecting entanglement (or separability), measures on quantum states, 
etc. The required background is Linear Algebra, especially the theory of 
matrix.  

Dr. Deping Ye 
Assistant Professor in Mathematics 

deping.ye@mun.ca 



Combinatorial designs and structures 

Dr. David Pike 
Professor in Mathematics 

dapike@mun.ca 

One of the several disciplines within 
combinatorial mathematics is that of design 
theory. Central to this field of study is the 
concept of a combinatorial design, which 
consists of a set V of elements called points 
together with a set B of subsets of V called 
blocks that conform to certain properties, such 
as requiring each block of B to have the same 
cardinality k as well as requiring that each 2-
subset of V be found in the same number of 
blocks of B).  

There are many open problems regarding 
designs, including questions such as whether 
designs with certain parameters exist, and if so, 
how many are there? Designs can also be 
associated with other structures, such as 
graphs in which the vertices are themselves 
blocks of a design and adjacency of vertices is 
based on the blocks having a specified number 
of points in common. While various properties 
of these graphs have already been discovered, 
there are several interesting questions that 
remain to be answered.  

As an added bonus to a USRA in combinatorics 
at Memorial University, note that Memorial 
University will be hosting a four-week AARMS 
Summer School in 2012, during which guest 
lecturers will deliver two courses involving 
combinatorial mathematics. One of these will 
focus specifically on combinatorial designs and 
graph decompositions.  

The geometry of black holes 

Black holes are among the most elementary 
and fascinating objects of study in  
mathematical physics. They arise as  
solutions of Einstein's theory of general 
relativity characterized by an event horizon, 
a region of space time from which nothing 
can escape. Further, they serve as a  
theoretical setting in which quantum effects 
due to intense gravitational fields can be 
studied.  As a result, they are highly   
relevant from the point of view of  construct-
ing a consistent theory of  quantum gravity.  
 
Leading candidates for such a theory, such 
as string theory and the gauge theory/

gravity correspondence (AdS/CFT) lead to 
extra spatial dimensions. Black holes in 
higher dimensions arise naturally within 
this framework and their study has led to a 
number of new insights, such as a  
microscopic derivation of Hawking's semi-
classical entropy formula and holography.  
 
An important problem is to classify black 
hole solutions of Einstein's  equations in 
higher dimensions. However, the  
gravitational field has more degrees of 
freedom and there are a great number of 
possibilities. It has recently emerged that 
exotic, non-spherical black holes 
(doughnut-shaped „black rings‟) are  
possible and that, in general, black holes 
are specified not only by their mass and 

spin, as is the case in ordinary four-
dimensional space time. This project will 
focus on methods aimed at analyzing a 
certain class of black holes for which  
Einstein's equations can be separately 
solved „near‟ the black  hole event horizon 
itself. This will allow for a systematic  
treatment of the geometry and topology of 
these black holes. An overall aim is to 
place these results within the context of 
string theory and AdS/FT.   
 
Although a first course in differential  
geometry or general relativity would be 
very helpful, it is also adequate to have a 
good grasp of techniques in mathematical 
physics: vector calculus/analysis,  ordinary 
differential equations, and mechanics.  Dr. Hari Kunduri 

Assistant Professor in Mathematics 
hkkunduri@mun.ca 


